Valuing the impact of harmful algal blooms on Lake Erie beaches

Leah H. Palm-Forster^{1,2} and Frank Lupi^{1,3}

¹Michigan State Univ., Agric., Food, & Resource Econ. & ³ Fisheries and Wildlife ² Univ. of Delaware, Applied Econ. & Statistics

GLBA Conference, Oct 28 2015

50 MILES

Excess Nutrients Threaten Lake Erie

Photo: tripadvisor, cwlee © Monroe News

Two objectives:

- 1. Estimate trips to Lake Erie beaches and the loss in economic value from beach closures
 - Previous studies on Lake Erie beach values are limited or outdated (Sohngen et al., 1999)
 - We don't have a current study specific to Lake Erie
- 2. Evaluate ways to transfer <u>estimates</u> and <u>models</u> from other studies to Lake Erie
 - Use a relatively new study from Michigan (Chen et al, 2013)

What kind of economic value?

Value TO the beachgoers

- Net economic benefit to beachgoers
- Willingness to Pay minus what they spend
- Not measuring spending and what happens to it
- Spending is a cost to beachgoers

Function vs. Value Transfer

 Benefit transfer – using values estimated at a "study site" to evaluate similar change at "policy site"

1. Just multiply: <u>Transfer value</u> \times <u>trips to Lake Erie beach</u>

2. Use a model: Transfer demand functions

Function transfer is generally favored over value transfer

Benefit Function Transfer

Chen, Min. 2013. "Valuation of Public Great Lakes Beaches in Michigan." Dissertation. Michigan State University.

Figure 1. Repeated nested logit model

Benefit Function Transfer

Chen, Min. 2013. "Valuation of Public Great Lakes Beaches in Michigan." Dissertation. Michigan State University.

Figure 1. Repeated nested logit model

Benefit Function Transfer

Chen, Min. 2013. "Valuation of Public Great Lakes Beaches in Michigan." Dissertation. Michigan State University.

Figure 1. Repeated nested logit model

Study Sites

- 451 Beaches in Michigan
- Population: Michigan residents
- Valuing <u>single day</u> trips

Source: Chen, 2013

Policy Sites

Transfer the model functions

- 424 beaches in Ohio & Michigan
- Population: Ohio residents and some residents of Michigan and Indiana.
- Predict single day trips
- Value <u>single day</u> trips

The Full Choice Set – 424 beaches

Average choice set \rightarrow 162 beaches.

MICHIGAN ST

Identifying the population of beachgoers

4740 Census tracts in OH, IN, and MI

Population data

- Probability of taking a trip to the beach
- Demographic data required:
 - Gender
 - Age
 - Race
 - Education
 - Employment
 - Children under 17

Steps in benefit transfer

1. Predict baseline day trips to all beaches

2. Predict how day trips change to beaches when HABs cause closures at one or more beaches.

3. Estimate loss of the beach closures (i.e., economic losses to the beachgoers).

Economic Values from Transfer Approach

 Typical day trip to Lake Erie beaches worth about \$16 to \$18 per trip

 Day trips to typical Western Lake Erie beach worth about \$2 million per summer season

These are economic values to the beachgoer

Values for Individual Beaches

Estimated economic losses to beachgoers from one-week closures at individual beaches

Lake Erie beaches in Ohio

Values If Multiple Beaches Close

Summary (we'd rather have all the data, but...)

- No Lake Erie model & No complete beach use data
- Applied a model from MI to Lake Erie sites to get <u>trips</u> and <u>value</u> of beaches (day trips only)
- Function transfer was essential to estimate trip demand and trip responses.
- Scale of closures nonlinearly affects losses per trip
 - Results from the two transfer methods deviated nonlinearly as scale of closures increased.

Thanks to partners & supporters

Thanks for research help and insightful comments: Min Chen, Scott Knoche, Scott Swinton,